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In this paper we study some aspects of the approximation of mappings taking
values in a special class of upper semicontinuous functions. Some Korovkin type
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1. INTRODUCTION

The aim of this paper is to introduce some aspects of the approximation
of mappings whose images are functions of a certain class. Let F(Rp) be
the subspace of [0, 1]R

p
, which consists of those functions which are upper

semicontinuous and have compact support. A first Korovkin type theorem
is obtained for positive linear operators on the class of continuous map-
pings from a compact Hausdorff space into F(Rp), equipped with a
uniform type metric.

It can be observed that the class of non-empty compact subsets of Rp can
be embedded into the class of mappings we are considering by taking the
indicator function of the set, and so results in the paper are valid for
compact (not necessarily convex) random sets.

On the basis of this result we show how to obtain other Korovkin type
theorems by considering topologies on F(Rp) weaker than that of the
above-mentioned metric.

The main results of the paper are contained in Sections 3 and 4. In the
former, Korovkin type theorems and applications of these are presented. In
Section 4, the above results allow us to study the convergence of some



operators based on partial sum stochastic processes. Concepts and results
which are required in order to develop the paper are collected in Section 2.

2. PRELIMINARIES

Let K(Rp) denote the class of non-empty compact subsets of Rp, let
Kc(Rp) be the subclass of non-empty compact convex subsets of Rp, and let
B denote the ball {x ¥ Rp: |x| [ 1}, where | · | is the Euclidean norm on Rp.
The convex hull of a set A will be denoted co A. The Euclidean inner
product will be denoted O · , ·P. If A is a subset of Rp we will denote by IA
the indicator function of A.

The space K(Rp) will be endowed with a linear structure given by the
Minkowski addition and the product by a scalar; that is,

A+C={a+c | a ¥ A, c ¥ C}, lA={la | a ¥ A},

for all A, C ¥K(Rp), and l ¥ R. The space (K(Rp),+, .) is not a vector
space.

If A ¥Kc(Rp) and l1, l2 ¥ [0,+.) then l1A+l2A=(l1+l2) A. More-
over, Kc(Rp) is closed under Minkowski addition and product by a scalar.

Given A, C ¥K(Rp), the Hausdorff distance between A and C is defined
by

dH(A, C)=max{sup
a ¥ A

inf
c ¥ C

|a−c|, sup
c ¥ C

inf
a ¥ A

|a−c|}.

Then (K(Rp), dH) is a complete, separable metric space and (Kc(Rp), dH)
is a closed subspace (see Debreu [5]).

If A ¥K(Rp), its magnitude is defined to be

||A||K=dH({0}, A)=sup
x ¥ A

|x|.

Some well-known properties of this metric are:

(i) dH(A+C, D+E) [ dH(A, D)+dH(C, E),
(ii) dH(aA, bA) [ |a−b| ||A||K,
(iii) dH(co A, co C) [ dH(A, C),
(iv) dH(A, C)=inf{e > 0 | A … C+eB, C … A+eB),

where A, C, D, E ¥K(Rp), a, b ¥ R.
Let (W,A) be a measurable space. A set valued function X: WQK(Rp)

is called a random set if it is A-BdH measurable, where BdH denotes the
Borel s-field in K(Rp).
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If X: WQK(Rp) is a random set, its magnitude is defined to be the
mapping ||X||K: WQ R with ||X||K(w)=||X(w)||K for all w ¥ W. The mea-
surability of a random set X implies that ||X||K is measurable (see Hiai and
Umegaki [8]).

If X, T: WQK(Rp) are random sets, we will denote by DH(X, Y) the
value supw ¥ W dH(X(w), Y(w)).

It is well known that if X, Y: WQK(Rp) are random sets, then X+Y,
lX and co X, where (co X)(w)=co(X(w)) for all w ¥ W, are also random
sets for all l ¥ R (see Matheron [13]).
F(Rp) is the class of upper semicontinuous functions V=Rp

Q [0, 1]
such that supp V is compact. Given V ¥F(Rp) we define its a-level set
Va={x ¥ Rp | V(x) \ a} if a > 0 and V0=supp V. We will denote by Fc(Rp)
the subclass of F(Rp) such that V ¥Fc(Rp) if and only if Va is convex for
all a ¥ [0, 1].

The class F(Rp) can be endowed with a linear structure, for which
addition and product by a scalar are defined by

(U+V)(x)=sup{a ¥ [0, 1] | x ¥ Ua+Va}

(lU)(x)=˛U(l
1x) if l ] 0

I{0}(x) if l=0

for all U, V ¥F(Rp), l ¥ R.
It is possible to see that these operations are inherited levelwise from

those defined on K(Rp); that is, for all a ¥ [0, 1]

(lU)a=lUa and (U+V)a=Ua+Va

and F(Rp) and Fc(Rp) are closed under them (Puri and Ralescu [17]).
F(Rp) can be endowed with the d. metric where

d.(V, W)= sup
a ¥ [0, 1]

dH(Va, Wa).

(F(Rp), d.) is a complete metric space (see Puri and Ralescu [18]), but
it is not separable (see Klement et al. [11]).
Fc(Rp) will be embedded into the Banach space L.(Sp−1×[0, 1]) of

bounded, measurable real functions on Sp−1×[0, 1] by means of the
mapping s:Fc(Rp)Q L.(Sp−1×[0, 1]) with VW s( · , · , V): Sp−1×[0, 1]Q
R and s(r, a, V)=supa ¥ VaOr, aP, for all V ¥Fc(Rp) and (r, a) ¥ Sp−1×
[0, 1].

From the properties of the Hausdorff metric it follows that
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(i) d.(A+C, D+E) [ d.(A, D)+d.(C, E),
(ii) d.(aA, bA) [ |a−b| ||A0 ||K,
(iii) d.(co A, co C) [ d.(A, C),

where A, C, D, E ¥F(Rp), a, b ¥ R, and if V ¥F(Rp), then co V ¥Fc(Rp)
is the upper semicontinuous mapping such that (co V)a=co(Va) for all
a ¥ [0, 1].

In order to state a property similar to the fourth one of dH we consider a
partial ordering on F(Rp). Thus, for V, W ¥F(Rp) we will write V …W if
Va …Wa for all a ¥ [0, 1] or, equivalently, V(x) [W(x) for all x ¥ Rp.
Thus,

(iv) d.(A, C)=inf{e > 0 | A … C+eIB, C … A+eIB}.

A mapping X: WQF(Rp) will be said to be measurable, if the a-level
function Xa: WQK(Rp), with Xa(w)=(X(w))a for all w ¥ W, is a random
set for all a ¥ [0, 1]. This kind of mapping is also referred to as a fuzzy
random variable (see Puri and Ralescu [18]).

Given a probability space (W,A, P), a measurable mapping X: WQ

F(Rp) is said to be integrably bounded with respect to P, if and only if
||X0 ||K ¥ L1(P). In this case, the expected value of X with respect to P,
denoted by > X dP is the unique element V of F(Rp) such that Va is the
Aumann integral of Xa with respect to P for all a ¥ [0, 1] (see Aumann [3]
and Puri and Ralescu [18]).

From now on W will denote a compact Hausdorff topological space and
we will consider its Borel s-field. If (E, d) is a metric space, C(W, E) will
denote the set of all continuous mappings X: WQ E, and B(W, E) will
denote the set of all bounded mappings X: WQ E.

If X, Y: WQF(Rp) are measurable mappings, then X+Y, lX and co X
are also measurable for all l ¥ R. These properties are inherited from the
corresponding properties of random sets.

It is clear to see that if X ¥ C(W,F(Rp)), then for each a ¥ [0, 1] the
mapping Xa: WQK(Rp) is continuous, and hence X is measurable.

On the class C(W,F(Rp)) we consider the D. metric defined by

D.(X, Y)=sup
t ¥ W

d.(X(t), Y(t)).

The order on F(Rp) induces one on C(W,F(Rp)): if X, Y ¥

C(W,F(Rp)), then X … Y will mean that X(t) … Y(t) for all t ¥ W. Then

D.(X, Y)=inf{e > 0 | X … Y+eIB, Y …X+eIB}.

Given X ¥B(W,F(Rp)) we will denote supx ¥ W ||X0 ||K (x) by ||X||C.
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A mapping T: C(W,F(Rp))Q C(W,F(Rp)) will be said to be linear, if
T(aX+bY)=aTX+bTY for all a, b ¥ [0,.) and X, Y ¥ C(W,F(Rp)), it
will be called sublinear, if T(X+Y) … TX+TY and T(aX)=aTX for all
a ¥ [0,.) and X, Y ¥ C(W,F(Rp)), it will be called positive, if TX … TY
for all X, Y ¥ C(W,F(Rp)) with X … Y and it will be called an F-operator,
if (TX)(w)=(TY)(w) for all X, Y ¥ C(W,F(Rp)) and w ¥ W such that
X(w)=Y(w).

If T: C(W,F(Rp))Q C(W,F(Rp)) is a positive sublinear operator, then

D.(TX, TY) [ ||TIB ||C D.(X, Y).

3. KOROVKIN TYPE THEOREMS ON C(W,F(Rp))

This section contains the main results of the paper. It is devoted to some
Korovkin type theorems for positive linear operators on the class
C(W,F(Rp)). These results will be essential to the development of
Section 4. Notice that if A ¥F(Rp), then A will also denote the constant
function in C(W,F(Rp)) which has value A.

Theorem 3.1. Let W be a compact Hausdorff topological space, and let
f: W2

Q R be a continuous mapping such that f(x, x)=0 for all x ¥ W and
f(x, y) > 0 for all x, y ¥ W with x ] y. Let Ln, l: C(W,F(Rp))QB(W,
F(Rp)), n ¥N, l ¥ L (L being an index set), be positive linear operators,
such that there exists n0 ¥N with

sup
l ¥ L, n \ n0

||Ln, lIB ||C <..

Let T: C(W,F(Rp))Q C(W,F(Rp)) be an F-operator.
Then the following conditions are equivalent:

(i) D.(Ln, lX, TX)Q 0 uniformly in l ¥ L for all X ¥ C(W,F(Rp)),
(ii) D.(Ln, l(f(x, · ) IB), T(f(x, · ) IB))Q 0 uniformly in l ¥ L for all

x ¥ W, D.(Ln, lA, TA)Q 0 uniformly in l ¥ L for all A ¥F(Rp),
(iii) supx ¥ W ||(Ln, l(f(x, · ) IB))0 ||K (x)Q 0uniformly inl ¥ L,D.(Ln, lA,

TA)Q 0 uniformly in l ¥ L for all A ¥F(Rp).

Proof. Obviously (i) implies (ii) because of the continuity of f.
To show that (ii) implies (iii) note that given e > 0, since f is continuous,

for all (x, t) ¥ W2 there exists a neighborhood Vx, t of (x, t) such that
|f(y, z)−f(w, u)| [ e for all (y, z), (w, u) ¥ Vx, t. Since we consider the
product topology in W2, we can take Vx, t=Vt(x)×Wx(t) with Vt(x) a
neighborhood of x depending on t and Wx(t) a neighborhood of t
depending on x.
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Since W is compact, the cover {Wx(t)}t ¥ W of W has a finite subcover
{Wx(ti)}

p(x)
i=1. Then V(x)=4p(x)

i=1 Vti (x) is a neighborhood of x for each
x ¥ W, and thus {V(x)}x ¥ W has a finite subcover {V(xj)}

s
j=1.

Given w, y ¥ V(x), for each t ¥ W there exists i0 [ p(x) such that t ¥
Wx(ti0 ), and so (w, t), (y, t) ¥ Vti0 (x)×Wx(ti0 ) which implies that |f(w, t)−
f(y, t)| [ e for all t ¥ W. Then, because of the linearity and positivity of
Ln, l,

D.(Ln, l(f(w, · ) IB), Ln, l(f(y, · ) IB))

[ ||Ln, lIB ||C D.(f(w, · ) IB, f(y, · ) IB)

=||f(w, · )−f(y, · )|| ||Ln, lIB ||C [ e ||Ln, lIB ||C

for all l ¥ L and n ¥N.
Given x ¥ W, since {V(xj)}

s
j=1 is a cover of the set W, there exists j0 [ s

with x ¥ V(xj0 )=4p(xj0 )
i=1 Vti (xj0 ), on the other hand, since {Wxj0

(ti)}
p(xj0 )
i=1 is a

cover of W, there exists i0 [ p(xj0 ) with x ¥Wxj0
(ti0 ), then (x, x), (xj0 , x) ¥

Vti0 (xj0 )×Wxj0
(ti0 ) and so

d.(Ln, l(f(x, · ) IB)(x), Ln, l(f(xj0 , · ) IB)(x)) [ e ||Ln, lIB ||C.

In accordance with this,

d.(Ln, l(f(x, · ) IB)(x), T(f(x, · ) IB)(x))

[ d.(Ln, l(f(x, · ) IB)(x), Ln, l(f(xj0 , · ) IB)(x))

+d.(Ln, l(f(xj0 , · ) IB)(x), T(f(xj0 , · ) IB)(x))

+d.(T(f(xj0 , · ) IB)(x), T(f(x, · ) IB)(x))

[ e ||Ln, lIB ||C+d.(Ln, l(f(xj0 , · ) IB)(x) T(f(xj0 , · ) IB)(x))+e ||TIB ||C.

Since T is an F-operator, (TX)(x)=T(X(x))(x) for all x ¥ W and X ¥

C(W,F(Rp)), and so

T(f(x, · ) IB)(x)=T(f(x, x) IB)(x)=T(I{0})(x)= lim
nQ.

(Ln, lI{0})(x)=I{0}

for any l ¥ L.
Then

d.(Ln, l(f(x, · ) IB)(x), T(f(x, · ) IB)(x))=d.(Ln, l(f(x, · ) IB)(x), I{0})

=||(Ln, l(f(x, · ) IB))0 ||K (x)
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and so

sup
l ¥ L

sup
x ¥ W

||(Ln, l(f(x, · ) IB))0 ||K (x)

[ max
1 [ j [ s

sup
l ¥ L

D.(Ln, l(f(xj, · ) IB), T(f(xj, · ) IB))

+e(sup
l ¥ L

||Ln, lIB ||C+||TIB ||C),

which proves that (ii) implies (iii) since supl ¥ L, n \ n0 ||Ln, lIB ||C <. for
some n0.

With respect to (iii) implies (i), given X ¥ C(W,F(Rp)) with X ] I{0} and
e > 0 (the case X=I{0} is trivial), for each x ¥ W there exists an open
neighborhood Vx of x such that d.(X(x), X(y)) [ e for all y ¥ Vx.

Let O=1x ¥ W (Vx×Vx). The complement Oc of O in W2 is compact.
Given (x, y) ¥ W2, if (x, y) ¥ O then there exists z ¥ W such that (x, y) ¥

Vz×Vz, which implies that d.(X(x), X(y)) [ 2e.
If (x, y) ¨ O, then f(x, y) > 0 and, by its continuity, f reaches a

minimum M> 0 in Oc. Then d.(X(x), X(y)) [ 2 ||X||C M−1f(x, y).
Then d.(X(x), X(y)) [ 2e+2 ||X||C M−1f(x, y) for all (x, y) ¥ W2, so,

given x ¥ W, the constant function X(x) satisfies the relation

X(x) …X+2eIB+2 ||X||C M−1f(x, · ) IB,

and, because of the linearity and positivity of Ln, l,

Ln, l(X(x))(x) … (Ln, lX)(x)+2e(Ln, lIB)(x)+2 ||X||C M−1Ln, l(f(x, · ) IB)(x).

In the same way

(Ln, lX)(x) … Ln, l(X(x))(x)+2e(Ln, lIB)(x)+2 ||X||C M−1Ln, l(f(x, · ) IB)(x),

and so

d.(Ln, l(X(x))(x), (Ln, lX)(x))

[ 2e ||(Ln, lIB)0 ||K (x)+2 ||X||C M−1 sup
l ¥ L

||(Ln, l(f(x, · ) IB)0 ||K (x).

We know that

sup
l ¥ L

D.(Ln, lX, TX) [ sup
l ¥ L

sup
x ¥ W

d.((Ln, lX)(x), Ln, l(X(x))(x))

+sup
l ¥ L

sup
x ¥ W

d.(Ln, l(X(x))(x), (TX)(x)).

By the previous inequality, we only have to show that the second term also
tends to 0.
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Since T is an F-operator,

sup
l ¥ L

sup
x ¥ W

d.(Ln, l(X(x))(x), (TX)(x))

=sup
l ¥ L

sup
x ¥ W

d.(Ln, l(X(x))(x), T(X(x))(x))

[ sup
l ¥ L

sup
x ¥ W

D.(Ln, l(X(x)), T(X(x))).

If

sup
l ¥ L

sup
x ¥ W

D.(Ln, l(X(x)), T(X(x)))

does not tend to zero, then there exist e > 0 and {xn} such that

D.(Ln, l(X(xn)), T(X(xn))) > e.

The functions X and TX are continuous, X(W) and TX(W) are compact,
and the sequence {xn} has a limit point x. So it is possible to choose a sub-
sequence {xnk} … {xn} such that D.(X(xnk ), X(x)) <

1
k and D.((TX)(xnk ),

(TX)(x)) < 1
k .

Then

e < sup
l ¥ L

D.(Lnk l(X(xnk )), (TX)(xnk ))

[ sup
l ¥ L

D.(Lnk l(X(xnk )), Lnk l(X(x)))

+sup
l ¥ L

D.(Lnk l(X(x)), T(X(x)))+D.(T(X(x)), (TX)(xnk )).

On the other hand

sup
l ¥ L

D.(Lnk l(X(xnk )), Lnk l(X(x))) [ sup
l ¥ L

||Lnk lIB ||C D.(X(xnk ), X(x))Q 0.

By hypothesis

sup
l ¥ L

D.(Lnk l(X(x)), T(X(x)))Q 0,

and since T is an F-operator,

D.(T(X(x)), T(X(xnk )))=sup
y ¥ W

d.(T(X(x))(y), T(X(xnk ))(y))

=d.((TX)(x), (TX)(xnk ))Q 0,

which concludes the proof of the theorem. L
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Remark 3.1. To prove that (iii) implies (i) it is enough to assume that
f: W2

Q R is bounded, non-negative and such that f(x, · ) ¥ C(W, R) for all
x ¥ W and inf f(F) > 0 for all closed subsets F of W2 with F 5 {(x, x),
x ¥ W}=”. Thus, the case (iii) implies (i) generalizes a theorem in
Nishishiraho [14] (see [1, Theorem 4.2.10]).

Remark 3.2. Let T̂:F(Rp)QF(Rp) be a continuous mapping, and
define the operator T: C(W,F(Rp))Q C(W,F(Rp)) by TX=T̂ pX. Then
T is an F-operator. As an example consider T̂:F(Rp)QF(Rp) with
T̂V=co V.

Remark 3.3. In Theorem 3.1 the hypothesis of convergence for con-
stants in (ii) and (iii) cannot be dropped. The two conditions

(i) D.(Ln, lX, TX)Q 0 uniformly in l ¥ L for all X ¥ C(W,F(Rp)),
(iiŒ) D.(Ln, l(f(x, · ) IB), T(f(x, · ) IB))Q 0 uniformly in l ¥ L for all

x ¥ W,

are not equivalent. It is sufficient to take Ln, l to be the identity for all
n ¥N and l ¥ L and TX=co X. The equivalence of the previous condi-
tions would imply that X=co X for all X ¥ C(W,F(Rp)).

Remark 3.4. A result similar to that in Theorem 3.1 can be obtained
for operators Ln, l: GQB(W,F(Rp)), G being a subclass of C(W,F(Rp))
closed under addition and multiplication by an scalar and satisfying the
conditions

— for all x ¥ W, f(x, · ) IB ¥ G,
— if X ¥ G, then for each x ¥ W the constant function X(x) belongs

to G.

In this case the condition of convergence for constants is required only
for those in G.

Remark 3.5. It is noteworthy that F(Rp) is not a convex cone in the
sense given by Prolla [15, 16] and Keimel and Roth [9]. Although Fc(Rp)
is a metric convex cone in the sense of [15, 16], the application of
Theorem 3.1 to Fc(Rp)-valued continuous mappings is not a consequence
of Prolla’s results, since we do not require the operators to be monotoni-
cally regular.

As an example of Theorem 3.1 we mention the following one adapted
from Altomare and Campiti [1, pp. 224–225]:

(1) Let W=[a, b], a, b ¥ R, a < b, f(x, y)=(x−y)2 and L a single-
ton. Then it is easy to deduce that the following conditions are equivalent:
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(i) D.(LnX, TX)Q 0 for all X ¥ C(W,F(Rp)),
(ii) D.(Ln(eiIB), T(eiIB))Q 0, for i=0, 1, 2, where ei(t)=t i,

D.(LnA, TA)Q 0 for all A ¥F(Rp).

Take T to be the identity. Considering G={fIB | f ¥ C(W, R)} in
Remark 3.4, we obtain the classical Korovkin theorem [12]. Considering
G={IF | F ¥ C(W,K(Rp))} we generalize the Korovkin type theorem in
Vitale [20].

(2) If (W, d) is a compact metric space, u: [0,.)Q [0,.) is strictly
increasing continuous with u(0)=0, and f(x, y)=u(d(x, y)), then f
satisfies the conditions of Theorem 3.1.

Remark 3.6. With only minor modifications in the proof, Theorem 3.1
can be slightly improved in the following ways:

— linearity can be replaced by sublinearity,
— instead of the limit F-operator T (the same for all l ¥ L), a family

{Tl}l ¥ L of limit F-operators can be taken without losing uniform conver-
gence. The family {Tl}l ¥ L must be such that {TlX}l is equicontinuous for
all X ¥ C(W,F(Rp)) and supl ¥ L ||TlIB ||C <..

These technical extensions will be needed for the proof of Theorem 3.2
and some of the subsequent examples.

The following result will be useful in order to obtain Korovkin type
theorems when we consider some topologies in F(Rp) weaker than the one
induced by d..

Theorem 3.2. Let W be a compact Hausdorff topological space, and let
f: W2

Q R be a continuous mapping such that f(x, x)=0 for all x ¥ W and
f(x, y) ] 0 for all x, y ¥ W with x ] y. Let Ln, l: C(W,F(Rp))Q C(W,
F(Rp)), n ¥N, l ¥ L (L being an index set), be positive linear operators,
such that there exists n0 ¥N with

sup
l ¥ L, n \ n0

||Ln, lIB ||C <..

Let T: C(W,F(Rp))Q C(W,F(Rp)) be an F-operator. Let Ŝi:F(Rp)Q
F(Rp) i ¥ I (I being an index set) be a family of sublinear positive mappings
such that

sup
i ¥ I

||SiIB ||C <.,

254 TERÁN AND LÓPEZ-DÍAZ



and define Si: C(W,F(Rp))Q C(W,F(Rp)) by SiX=Ŝi pX.
Then the following conditions are equivalent:

(i) D.(SiLn, lX, SiTX)Q 0 uniformly in (l, i) ¥ L×I for all X ¥

C(W,F(Rp)),
(ii) D.(SiLn, l(f(x, · ) IB), (SiT)(f(x, · ) IB))Q 0 uniformly in (l, i) ¥

L×I for all x ¥ W, D.(SiLn, lA, SiTA)Q 0 uniformly in (l, i) ¥ L×I for all
A ¥F(Rp),

(iii) supx ¥ W ||(SiLn, l(f(x, · ) IB))0 ||K (x)Q 0 uniformly in (l, i) ¥ L×I
D.(SiLn, lA, SiTA)Q 0 uniformly in (l, i) ¥ L×I for all A ¥F(Rp).

If in each of the conditions (i), (ii), (iii) ‘‘uniformly in (l, i) ¥ L×I’’ is
replaced by ‘‘uniformly in l ¥ L for each i ¥ I’’ then the three conditions
which result are equivalent.

Proof. We should remark that the operators SiLn, l and SiT satisfy the
conditions

— SiLn, l are positive and sublinear,
— supi ¥ I ||SiTIB ||C <.,
— {SiTX}i ¥ I is equicontinuous for all X ¥ C(W,F(Rp)) since

d.((SiTX)(x), (SiTX)(y)) [ ||ŜiIB ||K d.((TX)(x), (TX)(y)),

— SiT is an F-operator for all i ¥ I,
— there exists n0 ¥N such that for all n \ n0

sup
n \ n0, i ¥ I, l ¥ L

||SiLn, lIB ||C <.

since

sup
n \ n0, i ¥ I, l ¥ L

||SiLn, lIB ||C [ sup
n \ n0, i ¥ I, l ¥ L

||SiIB ||C ||Ln, lIB ||C.

With respect to the first part we only have to take Remark 3.6 into
account, considering LŒ=L×I, the set of operators {SiLn, l}i ¥ I, n ¥N, l ¥ L,
and as limit F-operators the family {SiT}i ¥ I.

To obtain the second part, it is sufficient to apply the first part to each
singleton class {SiT} with i ¥ I. L

As examples of Theorem 3.2 we can consider the following situations:
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(1) Let us consider the family {Ŝa}0 [ a [ 1 with Ŝa:F(Rp)QF(Rp)
given by ŜaV=IVa . Obviously this is a family of linear positive operators
and supa ¥ [0, 1] ||SaIB ||C=1.

In this way we obtain a Korovkin type theorem for the topology
generated by the a-level mappings and so the following conditions are
equivalent:

(i) DH((Ln, lX)a, (TX)a)Q 0 uniformly in l ¥ L for all a ¥ [0, 1]
and for all X ¥ C(W,F(Rp)),

(ii) DH((Ln, l(f(x, · ) IB))a, (T(f(x, · ) IB))a)Q 0 uniformly in l ¥ L
for all a ¥ [0, 1] and for all x ¥ W, DH((Ln, lA)a, (TA)a)Q 0 uniformly in
l ¥ L for all a ¥ [0, 1] and for all A ¥F(Rp),

(iii) supx ¥ W ||(Ln, l(f(x, · ) IB))0 ||K (x)Q 0 uniformly in l ¥ L,
DH((Ln, lA)a, (TA)a)Q 0 uniformly in l ¥ L for all a ¥ [0, 1] and for all
A ¥F(Rp),

(2) Let {ri}i ¥ I, ri:F(Rp)Q R be a family of positive semimagni-
tudes (i.e. r(V) \ 0, r(lV)=lr(V), r(U+V) [ r(U)+r(V), and if U … V
then r(U) [ r(V) forU, V ¥F(Rp) and l ¥ [0,.)) such that supi ¥ I ri(IB) <
.. Define {Ŝi}i ¥ I with Ŝi:F(Rp)QF(Rp) by ŜiV=ri(V) IB. Then {Ŝi}i ¥ I
satisfies the hypothesis of Theorem 3.2 and by its second part we obtain a
Korovkin type theorem for the topology generated by the family {ri}i ¥ I,
and so the following conditions are equivalent:

(i) ||ri(Ln, lX)−ri(TX)||Q 0 uniformly in l ¥ L for all i ¥ I and
for all X ¥ C(W,F(Rp)),

(ii) ||ri(Ln, l(f(x, · ) IB))−ri(T(f(x, · ) IB))||Q 0 uniformly in l ¥ L
for all i ¥ I and for all x ¥ W, ||ri(Ln, lA)−ri(TA)||Q 0 uniformly in l ¥ L
for all i ¥ I and for all A ¥F(Rp),

(iii) supx ¥ W ||ri(Ln, l(f(x, · )))(x)||Q 0 uniformly in l ¥ L for all
i ¥ I, ||ri(Ln, lA)−ri(TA)||Q 0 uniformly in l ¥ L for all i ¥ I and for all
A ¥F(Rp).

(3) As a particular case of (2), we can consider the family
{rr, a}(r, a) ¥ Sp−1×[0, 1] with rr, a:Fcl(Rp)Q R given by rr, aV=s(r, a, V)
(Fcl(Rp) being the subclass of Fc(Rp) such that V ¥Fcl(Rp), if and only if
the mapping PV: a ¥ [0, 1]W Va is Lipschitz), so we obtain convergence in
the w-s topology (see Xue et al. [21])

(4) Analogously, we can consider the family {supa ¥ [0, 1] s(r, a, · )}r ¥ Sp−1
defined on Fc(Rp), and then we obtain the pointwise convergence of the
support function uniformly in a. It is possible to obtain the same result for
Kc(Rp) by embedding this class in Fc(Rp).
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4. AN APPLICATION TO THE CONVERGENCE OF OPERATORS
BASED ON PARTIAL SUMS

In this section we apply the preceding results in the study of uniform
convergence of a particular class of operators defined through a stochastic
process.

Let B0 be the class of those Borel subsets of [0,.)d having non-zero
Lebesgue measure, and denote by “A the boundary of A ¥B0. If A …B0,
d > 0, then we set

rA(d)=sup
A ¥A

md(“A+dB),

where md is Lebesgue measure in Rd. We will say that A satisfies the
smooth boundary condition if rA(d)Q 0 as dQ 0+ (notice that the term
‘‘smooth’’ is not used in the sense that “A is a smooth curve for A ¥A).

Let F be the family of sequences j={jn}n …B0 such that md(jn)Q..
For the sake of brevity, we will say that Y … F satisfies the smooth
boundary condition if {n−1jn | j ¥Y, n ¥N} does.

The following ‘‘strong law of large volumes’’ is a restatement of
Theorem 1 and Remark 1 in [4]:

Theorem 4.1 (Bass–Pyke uniform strong law of large numbers). Let t
be a random variable such that E |t| <., and let {tj}j ¥Nd be a d-dimensional
array of independent random variables having the same distribution as t.
Let Y … F satisfy the smooth boundary condition and be such that
supj ¥Y md(jn)−1=O(n−d). Then,

sup
j ¥Y

:md(jn)−1 C
j ¥ jn 5N

d
tj−E[t] :Q 0

almost surely.

Let I … R be an Interval. Let {tj, x}j ¥Nd, x ¥ I be a doubly indexed stochas-
tic process such that for each x ¥ I all tj, x are independent and identically
distributed. Moreover, for each x ¥ I assume that E[t1Fx]=x (where
1F=(1, 1, ..., 1)) and denote by s2(x) the variance Var[t1Fx].

Given a sequence j ¥ F, we define a process {Sjn, x}n ¥N, x ¥ I by

Sjn, x=md(jn)−1 C
j ¥ jn 5N

d
tj, x.

From now on, we will assume that the values of Sjn, x lie in I.
We denote by B(I,F(Rp)) and Cb(I,F(Rp)), respectively, the classes of

bounded and bounded continuous F(Rp) valued functions on I. Now we
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are finally able to define sequence based operators Ljn : Cb(I,F(R
p))Q

B(I,F(Rp)) by

Ljn (X, x)=F X dPjn, x,

Pjn, x being the probability distribution on I induced by Sjn, x. Obviously,
these operators are linear and positive, since the Aumann integral has both
properties under the conditions considered.

For each x ¥ I, let Qx
n be the nth convolution with itself of the distribu-

tion induced by t1Fx. In the following theorem, we use Theorem 3.1 and its
Example 1 in order to provide sufficient conditions for the uniform con-
vergence of a family of operators Ljn .

Theorem 4.2. Let I … R be an interval and let W … I be compact. LetY …

F satisfy the smooth boundary condition and be such that supj ¥Y md(jn)−1=
O(n−d). Moreover, assume that supx ¥ W s2(x) <. and sup{Qx

n(Z) | Z is an
atom of Qx

n} tends to 0 uniformly in x ¥ W. Then, for each bounded con-
tinuous mapping X: IQF(Rp),

Ljn (X, · )|Q

D. co X

uniformly in j ¥Y, where D.(Y, Z)=supx ¥ W d.(Y(x), Z(x)).

Proof. One only needs to apply the above-mentioned example by
taking L=Y. In order to reach the conclusion, one checks convergence for
the family {IB, e1IB, e2IB} 2F(Rp).

(1) Let us see whether supj ¥Y D.(L
j
n (IB, · ), IB) tends to 0. In fact,

Ljn (IB, x)=F IB dPjn, x=F IB dP=IB,

so it is actually trivial. Notice that the Change-of-Variable Theorem for the
Aumann integral can be applied since functions under the integral sign take
values in Fc(Rp).

(2) We shall prove that supj ¥Y D.(L
j
n (e1IB, · ), e1IB) tends to 0. As

before,

Ljn (e1IB, x)=F e1IB dPjn, x=F Sjn, xIB dP=E[Sjn, x] IB.

But

E[Sjn, x]=F md(jn)−1 C
j ¥ jn 5Nd

tj, x dP=md(jn)−1 card(jn 5Nd) x,
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and so

sup
j ¥Y

D.(L
j
n (e1IB, · ), e1IB)=sup

j ¥Y

sup
x ¥ W

d.(md(jn)−1 card(jn 5Nd) xIB, xIB)

=sup
j ¥Y

sup
x ¥ W

|md(jn)−1 card(jn 5Nd) x−x|

[ (sup W) sup
j ¥Y

|md(jn)−1 card(jn 5Nd)−1|.

Finally, observe that an application of Theorem 4.1 to an array of
degenerate random variables, each of constant value 1, yields that

sup
j ¥Y

|md(jn)−1 card(jn 5Nd)−1|Q 0

and therefore

sup
j ¥Y

D.(L
j
n (e1IB, · ), e1IB)Q 0.

(3) We shall prove that supj ¥Y D.(L
j
n (e2IB, · ), e2IB) tends to 0. We

see that

Ljn (e2IB, x)=F e2IB dPjn, x=F (Sjn, x)2 IB dP=E[(Sjn, x)
2] IB

=(Var[Sjn, x]+E[S
j
n, x]

2) IB,

and so

sup
j ¥Y

D.(L
j
n (e2IB, · ), e2IB)=sup

j ¥Y

sup
x ¥ W

d.((Var[Sjn, x]+E[S
j
n, x]

2) IB, x2IB)

=sup
j ¥Y

sup
x ¥ W

|Var[Sjn, x]+E[S
j
n, x]

2−x2|

[ sup
j ¥Y

sup
x ¥ W

Var[Sjn, x]+sup
j ¥Y

sup
x ¥ W

|E[Sjn, x]
2−x2|.

Now,

sup
j ¥Y

sup
x ¥ W

Var[Sjn, x]

=sup
j ¥Y

sup
x ¥ W

Var 5md(jn)−1 C
j ¥ jn 5N

d
tj, x6

=sup
j ¥Y

sup
x ¥ W

md(jn)−2 card(jn 5Nd) s2(x)

[ (1+sup
j ¥Y

|md(jn)−1 card(jn 5Nd)−1|) sup
x ¥ W
s2(x) sup

j ¥Y

md(jn)−1.
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This vanishes at infinity, since the first factor tends to 1 (as seen in the
second step of the proof), the second one is bounded by hypothesis, and
the third one is O(n−d) by hypothesis.

Finally,

sup
j ¥Y

sup
x ¥ W

|E[Sjn, x]
2−x2|

=sup
j ¥Y

sup
x ¥ W

|md(jn)−2 card(jn 5Nd)2 x2−x2|

[ max{inf W, sup W}2 sup
j ¥Y

|md(jn)−2 card(jn 5Nd)2−1|

and

sup
j ¥Y

|md(jn)−2 card(jn 5Nd)2−1|

=sup
j ¥Y

|md(jn)−1 card(jn 5Nd)−1|

×(sup
j ¥Y

|md(jd(jn)−1 card(jn 5Nd)+1|)

[ sup
j ¥Y

|md(jn)−1 card(jn 5Nd)−1|

×(sup
j ¥Y

|md(jn)−1 card(jn 5Nd)−1|+2),

which vanishes at infinity.
(4) Let us see whether supj ¥Y D.(L

j
n (A, · ), co A) tends to 0, for all

A ¥F(Rp). Notice that the change-of-variable technique in the first step of
the proof is no longer valid.

We decompose each probability measure Pjn, x into its atomic part (Pjn, x)a
and its atomless part (Pjn, x)b. We define atoms Pjn, x={Z | Z is an atom of
Pjn, x}. Then

Pjn, x=l
j
n, x(P

j
n, x)a+(1−l

j
n, x)(P

j
n, x)b,

where ljn, x=Pjn, x(1 atoms Pjn, x). Then

F A dPjn, x= C
Z ¥ atoms Pjn, x

Pjn, x(Z) A+(1−l
j
n, x) co A.
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In case some Pjn, x has infinitely many atoms, the series above is defined to
be the d.-limit of the sequence of partial sums (this is an obvious general-
ization of the arguments in [7, Section 7]). It now follows that

d. 1F A dPjn, x, co A2

=d. 1 C
Z ¥ atoms Pjn, x

Pjn, x(Z) A+(1−ln, x) co A,

ln, x co A+(1−ln, x) co A2

[ d. 1 C
Z ¥ atoms Pjn, x

Pjn, x(Z) A, ln, x co A2

=d. 1 C
Z ¥ atoms Pjn, x

Pjn, x(Z) A, C
Z ¥ atoms Pjn, x

co(Pjn, x(Z) A)2 .

Now an application of the Shapley–Folkman inequality (see for instance
[2]) and a limiting argument (if Pjn, x has infinitely many atoms) yield
straightforwardly the inequality

d. 1F A dPjn, x, co A2 [ ||A0 || sup{Pjn, x(Z) | Z is an atom of Pjn, x}.

For the sake of brevity, we set a(P)=sup{P(Z) | Z is an atom of P},
whenever P is a probability measure. Accordingly,

sup
j ¥Y

D.(L
j
n (A, · ), co A) [ ||A0 || sup

j ¥Y

sup
x ¥ W

a(Pjn, x).

Recall that Qx
m denotes the mth convolution with itself of the distribu-

tion of t1Fx, and note that Pjn, x and Qx
card(jn 5N

d) are induced by random
variables differing only by a scale factor. Indeed, Pjn, x is the distribution
induced by Sjn, x=md(jn)−1 ;j ¥ jn 5N

d tj, x whereas Qx
card(jn 5N

d) is induced by
;j ¥ jn 5N

d tj, x. This implies that

a(Pjn, x)=a(Qx
card(jn 5N

d)).

By hypothesis, supx ¥ W a(Q
x
n) vanishes at infinity. However, it is impor-

tant to note that {Qx
card(jn 5N

d)} is not necessarily a subsequence of {Qx
n}n

since {card(jn 5Nd)}n is not necessarily an increasing sequence. Thus, the
conclusion does not follow trivially.
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We claim that for allM> 0 there exists nM ¥N such that card(jn 5Nd) \
M for all j ¥Y and for all n \ nM. Assume the contrary; then for some
M> 0 and all k ¥N there exist jk ¥Y and nk \ k such that card(jknk 5
Nd) <M. From the assumption that supj ¥Y md(jn)−1=O(n−d), it follows
that

md(jnk )
−1 card(jknk 5N

d)=O(n−dk )0
k 0.

Let 0 < n < 1. Then, for some k0 ¥N and all k \ k0,

n < 1−md(jnk )
−1 card(jknk 5N

d) [ sup
j ¥Y

|md(jnk )
−1 card(jnk 5N

d)−1|,

so we reach a contradiction of the fact that supj ¥Y |md(jn)−1×
card(jn 5Nd)−1| vanishes at infinity. Thus the claim is true.

Now let e > 0. Then, there exists n0 ¥N such that supx ¥ W a(Q
x
n) < e for

all n \ n0. Moreover, according to the previous argument, taking M=n0
there exists some n1 ¥N such that card(jn 5Nd) \ n0 for all n \ n1 and for
all j ¥Y. Thus for all n \ max{n0, n1} and for all j ¥Y,

sup
x ¥ W

a(Qx
card(jn 5N

d)) < e.

Since this proves that

sup
j ¥Y

sup
x ¥ W

a(Qx
card(jn 5N

d))Q 0,

the proof is complete. L

Examples and remarks. We now describe some particular cases and
examples of these sequence based operators.

(1) If one takes d=1, j={(0, n]}n, Y={j}, then the Bass–Pyke
law becomes the classical strong law of large numbers. In this case
sequence based operators are based on arithmetical means of independent
and identically distributed random variables.

(2a) For each bounded, continuous K(Rp) valued function F, one
may define the mapping IF such that IF(x)=IF(x). Then IF is bounded and
continuous. This provides an example of sequence based operators to set
valued functions.

(2b) To each bounded continuous real function f we associate the
set valued mapping tW {f(t)}. Then its images by sequence based opera-
tors are also single valued. Thus sequence based operators can also act on
real functions.
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(3) If one takes both (1) and (2b) then the sequence based operators
are exactly the Feller operators constructed from arithmetical means of
i.i.d. random variables [6, Chap. 7; 19; 10].

(4) One may ask if the smooth boundary condition is strong or if, on
the contrary, there are large families of sets satisfying it. For instance, any
family of convex subsets of [0,.)d does satisfy it [4].

(5) We show now the form of the sequence based versions of
Bernstein operators. The functional version of Bernstein operators, which
is a particular case of (1) when random variables t1Fx are assumed to have a
Bernoulli distribution with parameter x ¥ [0, 1], is defined to be

Bn(X, x)=C
n

k=0

1n
k
2 xk(1−x)n−k X 1k

n
2

for x ¥ [0, 1]. The general version, given j ¥ F, is

Bjn (X, x)= C
card(jn 5N

d)

k=0

1card(jn 5Nd)
k
2 xk(1−x)card(jn 5Nd)−k X 1 k

md(jn)
2 .

We ought to remark that, in order to ensure that Bjn is well defined, one
needs to take sequences j such that card(jn 5Nd) [ md(jn). This limita-
tion does not exist when the interval I is unbounded, as would be the case
of Mirakyan-Szász, Baskakov, and many other operators.

(6) It is noteworthy that operators acting on a mapping X converge
to co X and not to X itself. This convexification effect is closely related to
the behavior of the Aumann integral. In the case of set valued Bernstein
operators, it was first shown by Vitale [20].

The following corollary illustrates points (5) and (6), showing that the
behavior of sequence based Bernstein operators is essentially the same as in
the classical case.

Corollary 4.1. Let W … (0, 1) be compact. Let Y … F satisfy the
smooth boundary condition and be such that card(jn 5Nd) [ md(jn) for all
j ¥ F, and supj ¥Y md(jn)−1=O(n−d). Then, for each continuous mapping
X: [0, 1]QF(Rp),

Bjn (X, · )|Q

D. co X

uniformly in j ¥Y, where D.(X, Y)=supx ¥ W d.(X(x), Y(x)).
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Proof. As we have said, sequence based Bernstein operators are
obtained in the case when t1Fx has a Bernoulli probability distribution with
parameter x ¥ [0, 1].

It is enough now to check the hypotheses of Theorem 4.2. First,
s2(x)=x(1−x) [ 1

4 for all x ¥ W, and second,

sup{Qx
n(Z) | x ¥ W, Z is an atom of Qx

n}=sup
x ¥ W

1n
k
2 xk(1−x)n−k,

which is o(n−1/2). L
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